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THE VALIDITY_OF THE RAYLEIGH EXPANSION
M, Neviere and M. Cadilhac¥®

SUMMARY. A new method to investigate the
diffraction of an electromagnetic wave by a
grating of infinite conductivity is glven.
This method, based on a convenilent conformadl
mapping, leads to a general discussion of
the validity of the Rayleigh expansion.

1. Formulation of the Problem -/

We will refer the space to a rectangular triad {(Qzyz). Ve
will consider'a pericdic c¢ylindrical surface having a periocd of
2%, whose generators arve parallel ©O the Oz axis. The directrix
iocated in the plane x0y has The equaticn ¥ = g(x) {(Figure 1).

The part of the space defined by ¥ = g(x) is filled with a metal
having infinite conductiviﬁy.o A piane electromagnetic wave having
a2 wave vector k and linearly polarized impinges on the grating
Gescribed in this way at an lneidence angle of 8., We will attempt
to determine the distribution of tThe energy diffracted among the

gifferent orders.

Because of the polarization under consideration (43, we will
consider the unknown of the problem to be the component along the
Oz axis of the electrical field vector ("case E /"), or the
component along the Oz axis of the magnetic excltation vector
("case H #"). This unknown I(x, y) is therefore a solution of

problem (I) according to [1]:
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@<k fie,y) =0, Tor y>gx; (1)

Sae2n, 9} = flx,y) exp{1k2n aing] (2)

("pseudo periodicity" property):

= L 4a
“incident

H

Yy yverifies an

(

Figure 1. Sch tic represen—- . . . . . s
gu era P "outgoing wave condition" for

“tation of a grating.

y = (3)
(1)

f = 0 . in the case E /
3f/3n = 0 in the case H /.

for v = g(x);

5¢/%n designates the normal derivative of the function f(x, ¥)
and k is the modulus of the wave vector of the incoming wave. I is

the root of (-~1) having the argument +im

2., TDormulation of the Prcblem (I)

r

Condition (&) often makes it difficult to solve this problem.
It would therefore be expedient teo Tind a point transformation
which would simplify its formulation. Such a transformation must
maintain conditions (2) and (3) and must not overly complicate (1).

It is possible fo verify that the family of conformal trans-

formations defined by:

oo

xug¢n§%anexp{m2}. B (5)



where s=x+lyand Z=X+1Y,

— satisfies Conditions {(2) and (3)

— replaces Equation (1) by

L7 e 2oy y o
_—ai\}“} ¢ a"af;z"-} s KA YIFR,Yru 0, (6)

with KW, Y) =&2de/uz(2

o acdording to the theorems for conformal transiormatlons,
it is possible to obtain the transformation of the directrix of
& grating in the 0X axis by a suitable cholce of the Q-

The new coefficient x2(\v,Y) is then periodic and has the

% when

pericd 27. In addition, it exponentlally strives {0 k
Y + @, If we assume that for Y > A, where & is a number to be
determined using some tests, KIX,r)=i%, we are led to a previously

studied [2] 1imit problem.

Two types of problems can be considered:

-

(z) the grating profile is given, and the transformation

'oh

coefficlents o, are determined which transform this profile into

the 0X axis.

{b) <the collection of coefficients 1s given and the corres-

ponding grating is studled.

In the two cases, we. reach the problem discussed in [2].
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3. Relationship Between the Rayleigh Expansion

‘and the Conformal Transformatiocon

The fundamental hypothesis of Rayleilgh consists of assuming
that above the grating the total field can be expanded into plane

waves having the form-
: + %

Ele,y) = 22 By exp[iny) exp{ils+4 5in 0)x]

-

+exp[-iky],

where

S = (k2 - (1 ok sin 0)21M2 LT A2 = (a ki sin 0} >0;

= f{{n v ksin ) A2V A0 k2o +hsin 6% 0,

If we refer to Miller [3], the solutions cof the Helmholivz
and Laplace equations will satisfy the same conditions at the
limit and will have the same singularities. We can then study
the corresponding "static" case.

The. "static" Rayleigh expangion 1s then written as:

:::} R L
Ezyia Lo Dy orple s Ey} erpling] ¢y .
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o
=

Let us consider the function Z(z) = Xix, y) + i¥(x, ¥). Y

satisfies AY = 0, as an imaginary part of an analytlc function;
Y(x, g(x)) = 0 in terms of its constructlon. '

Therefore Y(x, y) is the solution of tThe electrostatic
problem corresponding to (I) and can be identified with the

static BE(x, ¥).



From this we can derive the fact that the validity of the
static Rayleigh expansion is proven if we can snow that:

_ »
Yi¥,9) = 2 Dyexpl~lnly}expling] s 3,
i

o - 0
if vy =gl

It is easy to show that this implies that:

.

o
2
Zez+ 2o 218, cxpling],
nzl :

which shows that the function Z{z) is holomorphlc Vy > gl

We can therefore see that the investigation of the validity

C
of the Rayleigh expansion leads to investigation of the singu-

larities of Z(z).

We must now determine the possible singularities of Z(z),
which is the inverse function of an analytic function in a
finite domain. In effect, the transformation (5) means that
there is a two-way correspondence between a point M,y = ) and
Mx,Yy=0 . The possible singularities are therefore necessarily
located in the domain limited by the curves having the equation

y=0zandy = g(x)}

Let us limit ourselves to the case where the number of

a

coefficients o, entering in (5) is finite. The function z(Z) is
therefore a whole function. Under these conditilons, the oniy
singularities possible are branching points which are obtained

wnen dz/dZ = 0.



L, Applications

4.1 Case of Cycloidal Gratings

Let us recall the fact that it 1s this type of profile which
can be used for the mathematical representation of holographic
gratings [4]: '

Iin (5), we will set ap=0 Vel R
oI o 2+ oy EXPUZ]O
pam ZeigenpliZ] . We will set @ =ie where & 1s
regl.

By setting Y = 0, we obtain the corresponding profile:
x=X-asinX; y=acos X,

which are parametric equations of a shortened cycloid (Figure 2.

Let us determine the region of validity of the Rayleigh

-

expansion.

dz/dZ =1 -aexp[iZ] =0,

*

if Z= 2, =iloga+ 2w,

=z =i(i+loga) + 2pn, Where p 13 a whole number.

The fleld E(x,‘y) can therefore be represented in terms of
plane waves only I1f y>Imiy). Consequently; 1f Im{yg) >-a, The
Rayleigh expansion can only be used to translate the boundary

conditions at the grating surfsace,

~
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Figure 2. Region in which the  Figure 3. Localizaticn of the
Rayleigh expansion is valid singuiarities in the case a = 1.
for a cycloidal grating. ‘
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The case is realistic if a>a,~0.3766, wnich 1s a sclution of

. the transcendental equaticn
i+a+loga=0. (7)
The Rayleigh expansion cannot be valid for translating tThe

boundary conditions over the entire grating surface except for
sufficiently flat prcfiles, such that a will be smaller than G-

4.2 Special Case a = 1 {Figure 3)
zo§1(1+loga) =i+ 2pu .,

The singularities are located at the grating points, and

the Rayleigh expansion .is never valid.

4,3 Case of Small Scale Gratings

This type of profile reguires an infinite number of
coefficlients Gy It g difficul: to determine the transcendenial

eguation corresponding to (7). We can also reason differently:



Figure 4. Correspondence Flgure 5. Correspondence

petween the g = x + 1y and between the Z = X + 1¥ and
the w plane. . the W plane. ..
Let us set: w = oxp[iz] ; . - (8)

W=exp(iZ]. '

(97

The relationships (8) and (8) respectively provide for the

correspondences shown in Figures 4 and 5.

It is easy to verify that the transformation defined by (5)
is equivalent to:

PRIE '21 ey Wi, . (10)
n=

and that the Rayleigh expansion is valid if the function W(w) is
holomorphic in the cross-hatched region of the plane (i), that is,

if the expansion (10) converges. This convergence occurs within /238

a circle having its cenﬁef 2t © (image at the point at inlinity
of the plane x0y), having & radius RM equal to the distance from
0 toc the closest singularity of w{W). We can therefore see that
the Rayleigh expansion is only valid for y < yM. It is therefore
not valid for a small scale grating,¥ and more generally, it 1s
not wvalid for a grating the prefile of which has angular points

directed towards y > 0.

¥Tnis result is only velic Tor exceptional conditions,
such as the grating of Marecher and 3troke [51.

[a]

Q



5. Conclusion

The family of conformal transformations propoced therefore
represents a gimple and permanent method of numerically finding
the region of valldity of the Rayleigh expansion for gratings
having a wide variety of prefiles.

Other applications, for example sinusocidal profiles, are

presently being studied.

REPERENCES
1. Petit, R. Rev. Opt., Vol. &, 1966, p. 245; and Wirgin, A.
Theses No. C. N. R. S. A. C., 1967, p, 1429.
2. Cerutti-Maori, G., R. Petit and M. Cadllhac. Compt. Rend.
Acad. Sci., Vol. 268, 196G, Paris, p. 1060.
3. Miilar, R. F. Proec. Cambridge Phil. Soc., ©0 be published.
4. Maystre, D. and R. Petit. Opt. Ccmmun., to be published.
5. Marechal, A. and G. W. Stroke, COmpt. Rend. Acad. Sci.,

Vol. 249, 1959, Faris, p. 23¢42.

Translated for Goddard Spzce Flight Center under contract No. NASwW
2483, by SCITRAN, P.0. Box 5455, Santa Barbara, California 93108.



